Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.
نویسنده
چکیده
The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.
منابع مشابه
Driving Force for Nucleation of Multi-Component Gas Hydrate
Based on driving force for crystallization of one-component gas hydrate, in this report an expression for the supersaturation for crystallization of multicomponent gas hydrate is derived. Expressions for the supersaturation are obtained in isothermal and isobaric regimes. The results obtained are applied to the crystallization of hydrates of mixtures of methane plus ethane and can apply to ...
متن کاملNucleation of bubbles in binary fluids
We have applied density functional methods to predict the nucleation rates of bubbles in superheated, stretched, or supersaturated binary fluid mixtures. Our model uses Lennard-Jones mixtures, with mixing rules chosen to allow either ideal or nonideal solution behavior. Deviations from the predictions of classical nucleation theory are in general quite large, with the locus of observable bubble...
متن کاملVLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules
By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...
متن کاملConductometric Studies of the Thermodynamics of Complexation of Zn2+, Ni2+, Co2+, Pb2+, Mn2+, Cu2+ Ions with 1,13-Bis(8-Quinolyl)-1,4,7,10,13-Pentaoxatridecane in Binary Solvent Mixtures
The complexation reaction between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) ligand with Zn2+, Ni2+, Co2+, Pb2+, Mn2+ and Cu2+ ions were studied conductometrically in different AcetoNitrile-NitroMethane (AN-NM) and AcetoNitrile-Methanol (AN-MeOH) mixtures. The formation constants of the resulting...
متن کاملTwo-dimensional kinetics of binary nucleation in sulfuric acid–water mixtures
Homogeneous nucleation theory for binary mixtures is developed as a two-component extension of the classical multistate kinetics rate theory. A matrix formulation, based on the stochastic model of Shugard and Reiss @J. Chem. Phys. 65, 2827 ~1976!#, provides the framework for solving the strongly coupled two-dimensional flux network associated with tracking the evaporation and growth kinetics of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 5 شماره
صفحات -
تاریخ انتشار 2015